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of intransitivity may change depending on environmental 
heterogeneity (Allesina and Levine 2011), successional stage 
(Worm and Karez 2002), or the presence of consumers 
(Paine 1984).

Despite the conceptual simplicity of intransitive com-
petitive hierarchies, the empirical estimation of the strength 
of competition and of the frequency of competitive intran-
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Equation 8 and 9 generate the required transition matrix P 
for an arbitrary number m of species in terms of competitive 
strength matrices for sets consisting of (m 2 1) species.

�e fact that the transition probability for two species 
(Eq. 8) contains terms that include other species means  
that a fully transitive competitive strength matrix C is not 
necessarily transitive with respect to the transition matrix P 
(Fig. 2). A fully transitive C matrix translates into a transitive 
P matrix only if competitive strengths of the off-diagonal 
elements in C are either constant or increase in each row 
from left to right (Fig. 2, C2, C3). �is feature is equivalent 
to a fully quantitatively nested pattern of competitive 
strength (cf. Staniczenko et al. 2013). If this ordering is  
broken, a transitive C matrix translates always into an  
intransitive P matrix (Fig. 2, C4). �us, it is important to 
quantify intransitivity in both the P matrix and in the  
underlying C matrix. Importantly, full transitivity (when 
defined by transition probabilities) does not necessarily 
imply competitive exclusion. Only C matrices that translate 
into absorbing P matrices cause competitive exclusion  
(Fig. 2, C1).

We note that the dominant eigenvector of the simple 
Markov chain model predicts the relative abundances of all 

In general the probability pij, with 1  i ≠ j  3, that species j 
is replaced by the species i is calculated as

pij ij ij jk 
1
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2) Spatial and environmental data
�e second approach is based on spatial abundance data for 
m species collected at i  1 to n sites for which environ-
mental variables are available. Assume a number of  
homogeneous patches. If observed species abundance dis-
tributions were determined only by competition, we  
could make a time-space substitution and interpret the  
vector A
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matrices matched the respective simulated matrices, we 
directly compared the simulated and the (best-fitting)  
predicted Ctest and Ptest matrices using Mantel correlations 
applied to the respective Euclidean distance matrices. We 
also used these best-fitting matrices to compare the degrees 
of transitivity tC and tP
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approach used to recover competitive interactions from 
abundance data (Fig. 3). Our ‘reverse-engineering’ algorithm 
performed best for P matrices in combination with the  
spatial and environmental data (Fig. 3). In these analyses, the 
regression of estimated versus true transitivity explained 
94% of the variance found in the data. Our methods were 
less successful at estimating pairwise competitive strength, 
and the respective regressions explained only between  
51% (abundance data, Fig. 3F) and 53% (time series data, 
Fig. 3B) of the variance.

Despite variability in the prediction of the precise  
degree of transitivity, all three approaches were able to 
identify at least moderate degrees of intransitivity in test 
matrices (Table 1). For P matrices, each of our three 
approaches correctly recovered more than 94% (time series 
approach) of the moderately to highly intransitive  
test matrices, with tP  0.95 (Table 1). For C matrices, at 
least 80% (times series) of them were correctly identified. 
Of the weakly intransitive matrices (0.95  tP  1.0) 
between 74% (time series) and 94% (environmental data) 
were identified as being intransitive by the P matrices,  
and between 72% (time series) and 90% (environmental 
data) of them were identified as being intransitive by the  
C matrices.

�ese methods were less successful in identifying  
perfectly transitive matrices (Table 1). For P matrices, 
between 36% (environmental data) and 60% (spatial data) 
of the upper 95% confidence limits of the tP distributions of 
the 100 best-performing matrices included the value of 1.0 
(full transitivity). For C matrices, between 49% (spatial data) 
and 61% (environmental data) were correctly identified as 
transitive. In all of the fully transitive test matrices, the  
predicted transitivity scores of the best-performing engi-
neered P and 
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competitive strength (C) and the transition (P) matrices, 
with the latter showing a stronger pattern of intransitivity 
(Table 3).

For Hymenoptera, there was a trend towards increasing 
intransitivity (tP) at higher slug weight (r  20.82, p  0.01, 
Table 2). �e confidence limits of tP of the 8 and 12 g  
carrion weight classes did not encompass 1.0 (Table 3).  
tP was also negatively correlated with the degree of species 
segregation (r  20.78, p  0.01, Table 3). �is trend was 
not obvious for tC (Table 3).

Detailed comparisons of the competitive hierarchies of 
flies and parasitoid wasps (Table 2), revealed a reordering  
of species competitive strength between the different  
carrion weight classes. �e average coefficient of correlation 
between all 45 combinations of predicted species rank  
orders of competitive strength was r  0.11 for Di). and 
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such as successional series. However, if conditions change 
through time (as in classic succession models; Connell and 
Slatyer 1977), the P matrix entries will be affected by both 
species interactions and abiotic conditions in each time step 
(Zaplata et al. 2013).

It is possible to construct other more complicated  
patch transition models, such as cellular automata models 
(Baltzer et al. 1998), but these models would require even 
more assumptions. Horn’s (1975) patch transition model is 
the simplest way to convert the effects of pairwise species 
interactions into changes in relative abundance. One  
important caveat for this patch model is that it assumes the 
outcomes of species interactions are density independent. 
�is assumption is not unreasonable for many sessile inver-
tebrates and plants that produce large quantities of mobile 
larvae or seeds and act effectively as a ‘propagule rain’. �is 
colonization scenario underlies classic models of island bio-
geography and metapopulation dynamics (Gotelli 2008).

As revealed by our benchmark testing, the methods 
introduced here successfully identify candidate competi-
tion matrices that predict abundance distributions that  
are very similar to the observed ones. Our approach recov-
ers competitive hierarchies (Fig. 3), and intransitive test 
matrices always had predicted tP and tC values  0.95. 
�us, we propose this 0.95 value as a rule of thumb to sep-
arate communities with a strong transitive hierarchy in 
their competitive networks from those showing some 
degree of intransitivity (Fig. 1). Environmental heterogene-
ity can override these patterns (Fig. 3), but a pattern of 
consistent species rank abundances among sites is always a 
strong indicator of a high degree of competitive transitivity. 
However, the converse is not true. If species ranks vary 
widely among sites, it could indicate either the presence of 
intransitive networks and/or environmental heterogeneity 
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