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Null model analysis of species associations using abundance data
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Abstract. The influence of negative species interactions has dominated much of the
literature on community assembly rules. Patterns of negative covariation among species are
typically documented through null model analyses of binary presence/absence matrices in
which rows designate species, columns designate sites, and the matrix entries indicate the
presence (1) or absence (0) of a particular species in a particular site. However, the outcome of
species interactions ultimately depends on population-level processes. Therefore, patterns of
species segregation and aggregation might be more clearly expressed in abundance matrices, in
which the matrix entries indicate the abundance or density of a species in a particular site.

We conducted a series of benchmark tests to evaluate the performance of 14 candidate null
model algorithms and six covariation metrics that can be used with abundance matrices. We
first created a series of random test matrices by sampling a metacommunity from a lognormal
species abundance distribution. We also created a series of structured matrices by altering the
random matrices to incorporate patterns of pairwise species segregation and aggregation. We
next screened each algorithm–index combination with the random and structured matrices to
determine which tests had low Type I error rates and good power for detecting segregated and
aggregated species distributions. In our benchmark tests, the best-performing null model does
not constrain species richness, but assigns individuals to matrix cells proportional to the
observed row and column marginal distributions until, for each row and column, total
abundances are reached.

Using this null model algorithm with a set of four covariance metrics, we tested for patterns
of species segregation and aggregation in a collection of 149 empirical abundance matrices and
36 interaction matrices collated from published papers and posted data sets. More than 80% of



of an interaction link, such as a trophic or pollinator

interaction (Jordano et al. 2003).



colonization. However, like a nonparametric test, our

random sampling algorithm does not specify the

colonization and extinction details of a true process

model. With this strategy, the hope is that the results will

be more general and capture stochastic patterns that

might arise from a variety of different process-based

models.

To meet these criteria (realistic marginal distributions

and mimicry of a process model), we have created

random matrices by drawing samples from a lognormal

species abundance distribution. This distribution cap-

tures a property that has been observed in many real

assemblages: a small number of species are very

common, but most species are very rare (Preston

1962). When species are ranked according to their

abundance or occurrence, this generates a characteristic

right-skewed histogram that is approximated by sam-

pling from a lognormal distribution. Whether the

lognormal distribution itself is caused by species

interactions or reflects neutral processes is still open to

debate (May 1975, Sugihara 1980, McGill et al. 2006),

but abundance and occurrence data collected for many

taxa at widely different spatial scales often conform to

an approximate lognormal distribution (McGill et al.

2007, Ulrich et al. 2010).

The distribution of species richness (species per site) is

more problematic because it depends largely on the

spatial grain and extent of sampling, which are often

determined by the investigator. For island archipelagos,

there may be a large amount of heterogeneity in the



ed precisely over the question of Type I errors: did

apparently unusual biogeographic patterns in species

occurrence imply the existence of strong species

interactions and assembly rules or might they have

arisen by chance (Connor and Simberloff 1979)?

Second, most of the data sets that have been used in

null model analysis are ‘‘natural experiments’’ and are

not based on controlled field manipulations. In such

cases, the inference of mechanism from pattern is

always weaker, so we prefer a more conservative

approach that minimizes Type I errors. Therefore, we

first confronted our candidate algorithms and metrics

with the ‘‘random’’ matrices to eliminate tests with high

Type I error rates. Then we evaluated a subset of

algorithms and metrics for their performance on a set

of ‘‘structured’’ matrices.

In spite of our attempt to test a broad array of null

models and algorithms, these analyses are still optimized

for their performance on the set of matrices that we

created by random sampling from a lognormal distri-

bution of species abundances. The tests are not fail-safe;

it is certainly possible to generate matrices with a model

of species interactions that would be incorrectly

classified as random (Colwell and Winkler 1984) or,

conversely, to generate matrices with a model of a

stochastic process (Ulrich 2004) that would be incor-

rectly classified as nonrandom. But our benchmark

analyses at least provide insight into how these analyses

will perform with a set of artificial matrices that

resemble real data in many respects and whose

properties are known. In the future, perhaps it will be

possible to tailor a particular test algorithm to a

particular empirical matrix for maximum power. Re-

cently, Ladau (2008) has proposed optimal null model

tests based on formal parametric statistical theory.

These alternative procedures are promising, although

they are vulnerable to most of these same criticisms

discussed here and are not as transparent as traditional

null model analysis.

Matrix structures

We simulated two types of random abundance

matrices (200 matrices each) to study the properties of

14 randomization algorithms and six measures of

covariation (Fig. 1). Additionally we used 185 empirical

matrices compiled from the literature that contained

abundance data to apply the best performing random-

ization algorithms and measures and to infer the

frequency of nonrandom species associations. Of these

matrices, 149 were standard abundance matrices (rows ¼
species, columns ¼ sites) and 36 of these matrices were

interaction matrices (rows, columns ¼ species).

Random matrices.—We created 200 matrices (MR) by

assigning individuals randomly to matrix cells. The

number of columns (¼ sites) in each matrix was

determined by sampling from a random uniform

distribution (5 � n � 50 sites). To determine the number

of rows (¼ species), we first set the total number of

species in the metacommunity ST by sampling from a

random uniform distribution (10 � ST � 200 species).

However, not all of these species will necessarily be

represented in the matrix because some rare species will

be missing due to insufficient sampling. To mimic these

sampling effects (the ‘‘veil line’’ of the lognormal

distribution; Preston 1962), we first specified the total

abundance Ni of species i by sampling from a lognormal

distribution of abundances:

Ni ¼ exi=2a ð1Þ

where xi ; N(0, 1) and a is a shape-generating parameter



was achieved. Sj was determined by random sampling

from a uniform distribution (1 , Sj � ST).

Empirical matrices.—We also analyzed 149 species 3

sites abundance matrices collected from the literature;

all matrices used in our analyses are found in the

Supplement. We classified matrices according to the

taxon studied (mammals, birds, fish, arthropods, non-

arthropod invertebrates, and plants), biome (terrestrial,



to be adjacent). The more checkerboard units there are

in a matrix, the more segregated species are in their

occurrence. We define an ‘‘abundance checkerboard’’ as

a 2 3 2 submatrix of the form

a b
c d

� �
a . b a . c d . b d . c

or

a , b a , c d , b d , c ð2Þ

where a, b, c, and d represent the abundances of two

species in two different sites. The metric CA is a count of

the total number of abundance checkerboards in the

matrix. This metric can be standardized with regard to

matrix size (m rows, n columns) by

CAST ¼ 4CA

mðm � 1Þnðn � 1Þ : ð3Þ

The standardized CA value can range from 0.0 to 1.0,

with high values of CA indicating more negative

covariation in abundances.

2) Similarly, we define the number of species

abundance aggregations AA as a count of aggregated

2 3 2 submatrices of the form

a b
c d

� �
a . b a . c d , b d , c

or

a , b a , c d . b d . c: ð4Þ

Again a standardized metric has the following form:

AAST ¼ 4AA

mðm � 1Þnðn � 1Þ : ð5Þ

The standardized AA value can range from 0.0 to 1.0,

with high values of AA indicating positive covariation in

abundance of species. AA and CA are correlated, but

may differ in their ability to detect positive or negative

covariation.

3) Rather than just counting abundance checker-

boards as CA and AA, we can quantify the strength of

covariance from the differences in abundance of the

checkerboard elements:

AST ¼
4
X ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða � cÞ2 þ ðb � dÞ2

a2 þ b2 þ c2 þ d2

s

mðm � 1Þnðn � 1Þ : ð6Þ

Large values of AST suggest strong positive covariance

among species.

4) The variance test of Schluter (1984) is a metric of

species covariance in abundance. This test compares the

variance of row totals V with the sum of the column

variances W. If the average covariance in abundance

among all pairs of species ;0.0, the value U ¼ V/W

should be v2 distributed with n degrees of freedom. Low

values of U indicate negative covariation in abundance.

5) Chao et al. (2008) extended the Morisita index of

similarity for two communities to a matrix-wide metric

for n communities of the following form:

MA ¼

Xm

i¼1

Xn

j¼1

pij

 !
2

�
Xn

j¼1

ðpijÞð pijÞ



species occurrences and the grand total of abundances

for the entire matrix. Following the recommendation of

Lehsten and Harmand (2006), we used 100 3 n 3 m such

reshufflings to generate each null matrix for the PM, PC,

and PR algorithms.

2) PC reshuffles populations equi-probably among the

nonempty cells of each column. This model preserves

species occurrences and total abundance per site, but

alters abundances of each species.

3) PR reshuffles populations equi-probably among the

nonempty cells of each row. This model preserves

species occurrences and total abundance per species,

but alters abundances of each site.

We used two individual-based fixed-zero algorithms:

1) OS first clears the matrix to be tested and then

assigns individuals randomly only to cells that originally

had nonzero values. The probability of placing an

individual in a particular cell is proportional to the

observed row and column abundance totals for that cell.

Individuals are assigned sequentially to the matrix in

this way until the total number of individuals in the

original matrix is reached. OS preserves species occur-

rences, but does not preserve observed row and column

total abundances.

2) OF first clears the matrix to be tested and then

assigns individuals randomly only to cells that originally

had nonzero values. The probability of placing an

individual in a particular cell is proportional to the

observed row and column abundance totals for that cell.

Individuals are assigned sequentially to the matrix in

this way until, for each row and column, total

abundances are reached. This algorithm allows the

abundance in each cell to vary, but preserves both

species occurrences and row and column abundance

totals of the original matrix. In a few cases, this

algorithm stopped placing individuals before the total

abundances were reached because the simultaneous

constraints on row and column totals could not be

met. However, the total number of individuals that

could not be placed was always less than 10 (,0.1%) and

should not affect the performance of the test.

We used nine individual-based floating-zero algo-

rithms:

1) IR assigns individuals randomly to matrix cells

with probabilities proportional to observed row and

column abundance totals until total species richness is

reached. In a few cases, this algorithm generated

matrices with empty columns (sites), which were

discarded prior to analysis.

2) IS assigns individuals randomly to matrix cells with

probabilities proportional to observed row and column

abundance totals until the total number of occurrences

is reached for each row and column.

3) ISR sequentially (row by row) assigns individuals

randomly to each row with probabilities proportional to

observed column abundance totals until the respective

number of row occurrences is reached.

4) ISC sequentially (column by column) assigns

individuals randomly to each column with probabilities

proportional to observed row abundance totals until the

respective column total species richness is reached.

5) IT assigns individuals randomly to matrix cells with

probabilities proportional to observed row and column

abundance totals until, for each row and column, total

abundances are reached.

6) ITR sequentially (row after row) assigns individ-

uals randomly to each row with probabilities propor-

tional to observed column abundance totals until the

respective row total (the number of individuals) is

reached.

7) ITC sequentially (column after column) assigns

individuals randomly to each column with probabilities

proportional to observed row abundance totals until the

respective column total (the number of individuals) is

reached.

8) IA reassigns all individuals randomly to matrix

cells with probabilities proportional to observed row

and column abundance totals until the matrix-wide total

number of individuals is reached. In a few cases, this

algorithm generated matrices with empty rows (species)

or columns (sites), which were discarded prior to

analysis.

9) IF is a two-step algorithm that preserves row and

column abundances and species richness. In the first

step, the algorithm converts the abundance matrix into a

presence/absence matrix. Using a standard swap proce-

dure (Gotelli 2000), 2 3 2 submatrices of the form

1 0

0 1

� �
or

0 1

1 0

� �

to

0 1

1 0

� �
or

1 0

0 1

� �

are reshuffled, again using 100 3 n 3 m reshufflings. In

the second step, the nonzero cells are cleared and then

filled according to the OF algorithm.

All null models and indices were calculated with the

software applications CoOccurrence and Matrix (see

Supplement).

Diagnostic tests

We first determined, for each combination of null

model (14 algorithms) and covariation index (six

indices), whether the null model correctly identified

most of the random matrices as being random. For each

algorithm–index combination, we estimated the tail

probabilities for the set of 200 random MR test matrices

by simulating 1000 null assemblages for each random

matrix. For the MS test matrices, we also simulated 1000

null assemblages, but used only the four most promising

algorithm–index combinations (Fig. 1), based on their

performance with the MR test matrices. If the analysis is

not prone to Type I statistical errors, then approximate-
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ly five of the 200 test matrices should be statistically

significant in the upper tail (P . 0.975) and five should
be significant in the lower tail (P , 0.025) of the

distribution.

After discarding a large number of model–index

combinations that failed this test, we then studied the
statistical power of the most promising combinations. We

did this by modifying the 200 MR matrices and generating

from each of them four new matrices (Mmod). First, we
generated 600 matrices for which 0.01% to maximally

33% randomly selected aggregated abundance checker-



Performance of covariance metrics

with random test matrices

For the best performing null models IA, IT, ITC, and

ITR, many of the six metrics tested had satisfactory Type

I error rates and correctly classified .77% of the MR

matrices as being random (Table 1). For the MS matrices,

all metrics except the Mantel test performed well with the

IT null model, but largely failed with IA, ITR, and ITC

(Table 2). Results of null model tests using the metrics

MA, AA, and U were least dependent on matrix size, fill,

and mean abundance (Table 3). The Z-transformed

values of CA, SA, and, particularly, the Mantel test

TABLE 2. Numbers of sequential matrices (MS; from a total of 200) identified by six metrics of species covariation as being either
segregated or aggregated (using the upper [UCL] and lower [LCL] 97.5% confidence limits), using only the most promising null
models of Table 1.

Algorithm

CA SA AA MA U Mantel

LCL UCL LCL UCL LCL UCL LCL UCL LCL UCL LCL UCL

IA 0 133 0 133 94 0 20 2 64 25 0 0
IT 3 9 1 11 5 2 0 11 0 13 26 1
ITC 0 69 0 72 8 2 61 3 69 3 0 0
ITR 0 84 0 83 82 0 2 67 1 37 0 158

Note: See Materials and methods: Strategies for evaluation of null model algorithms and Covariance metrics for explanations of
abbreviations.

TABLE 3. Pearson correlation coefficients between matrix size,
fill, and mean abundance (¼ mean number of individuals per
cell), and the Z-standardized covariation metric for the four
best-performing null models (Table 1) of the random
matrices (MR).

Matrix and properties IA IT ITC ITR

CA

Size 0.00 �0.16 0.02 �0.09
Fill 0.44 �0.26 �0.30 �0.31
Mean abundance 0.31 �0.14 �0.23 �0.15

SA

Size �0.02 �0.16 0.01 0.09
Fill 0.43 �0.26 �0.29 �0.31
Mean abundance �0.29 �0.12 �0.20 �0.13

AA

Size 0.00 0.17 0.00 �0.03
Fill 0.23 0.11 0.10 0.11
Mean abundance 0.10 0.09 0.02 0.07

MA

Size �0.03 0.01 �0.02 �0.09
Fill 0.14 0.01 0.18 0.04
Mean abundance 0.09 �0.01 0.15 0.06

U

Size 0.10 0.17 0.11 0.09
Fill 0.18 0.00 0.18 �0.07
Mean abundance 0.12 0.05 0.19 �0.01

Mantel

Size �0.04 0.05 �0.06 0.08
Fill 0.54 0.27 0.36 0.41
Mean abundance 0.27 0.21 0.13 0.21

Note: Significant correlations (P , 0.05) appear in boldface.
See Materials and methods: Strategies for evaluation of null
model algorithms and Covariance metrics for explanations of
abbreviations.

TABLE 4. Proportions of modified matrices (Mmod; total of
800) that were detected as being either aggregated (�1% to
�10% checkerboards, given as a percentage of the total
number of 2 3 2 submatrices) or segregated (0.01%





score) and BR (nestedness) were more conservative and

identified only 69% and 58%, respectively, of these

matrices as segregated (Table 4). With the IT algo-

rithm, the MA performed best (91% of segregated

matrices correctly identified), but the Mantel test was

too conservative (only 42% of the matrices identified).

Based on analyses of both random matrices (Tables 1–

3) and structured matrices (Table 4) the IT algorithm is

best for testing empirical matrices. The CA and SA

metrics are more conservative, and the MA and U

metrics are more liberal in the detection of nonrandom

patterns.

Meta-analysis of empirical abundance matrices

MA and U identified .80% of the 185 real abundance
matrices as being significantly segregated (Fig. 2). CA

and SA gave similar results, except that most plant and

interaction matrices were classified as random. Howev-

er, CA and SA also identified aggregated patterns in the

plant and interaction matrices that were not detected

with MA and U. All four metrics identified .50% of the

aquatic, mainland, and island data set as being

significantly segregated (Fig. 3). Again, CA and SA

appeared to be more conservative than MA and U. The

C score, which is based only on presence/absence data,

was more conservative than the abundance-based

metrics and identified at most 39% of the animal and

interaction matrices as being segregated. However, this

score classified 33–81% of the matrices as being either

random or even aggregated (Fig. 4A) and the results did

not differ greatly among island/aquatic/mainland ma-

trices (Fig. 4B).

DISCUSSION

Careful benchmark testing of potential randomiza-

tion algorithms and community metrics is essential for

valid null model analyses (Gotelli 2001). In this case,

the vast majority of algorithms and metrics that we

evaluated had unacceptably high Type I error rates

when tested with a series of random matrices that were

created from random sampling of a lognormal species

abundance distribution (Table 1). In fact, the only

metric that met the strict criterion of rejecting H0 for
,5%



that the IT algorithm assigns individuals to matrix cells

proportional to observed row and column totals until,

for each row and column, total abundances are reached.

A similar null distribution underlies contingency table

analysis (Everitt 1980), in which the null hypothesis of

no species 3 site interaction is tested by assuming

independent marginal probabilities for each cell in the

matrix (cf. Diamond and Gilpin 1982). However, Monte

Carlo simulations usually do not produce identical

results to parametric tests of the same data (Gotelli

and Ellison 2004). In this case, a parametric chi-square

test (without corrections for small sample size or sparse

matrices; Gotelli and Ellison 2004) of the 200 random

MR matrices identified 33 (16.5%) as being not random

at the 5% error level, a value within the range observed

for the IT null model (Table 1). Alternative algorithms

are available that do not fix row and column abundance

totals, but allow them to vary among different simulated

matrices (see Gotelli and Graves [1996] and Gotelli

[2000] for a discussion of this algorithm for presence/

absence analysis). However, such tests are potentially

prone to greater Type I error, because the null

hypothesis might be rejected due to differences in row

and column sums per se, rather than because of

aggregated or segregated abundance distributions.

When we applied the IT test with several metrics to the

empirical abundance matrices, nearly all of them showed

strongly segregated patterns (Fig. 2), although a few

aggregated distributions were also detected for plant and

interaction matrices. Although differences among taxa

were strong (Fig. 2), differences among habitat type were

not (Fig. 2), which is similar to the findings of Gotelli

and McCabe (2002) for presence/absence matrices. The

frequency of segregated distributions in these real data

sets (Fig. 2) is far greater than would be expected from

the frequencies expected in our null model tests (Tables 1

and 2). When these same matrices were converted to a

presence/absence form and analyzed with the standard

fixed–fixed null model (Gotelli 2001), segregated patterns

still dominated, although the frequency of nonrandom

matrices was much lower (Fig. 4). These results suggest

that null model analysis of abundance matrices may

potentially be more powerful than null model analysis of

presence/absence matrices (Hausdorf and Hennig 2007),

although the latter are more common in the literature

and are easier for field biologists to generate. Detection

errors and imprecise counts are certainly present in both

abundance and presence/absence matrices, and they

potentially affect the power of the tests. However, these

factors have only recently been incorporated into

statistical tests for species interactions (Royle and

Dorazio 2008, Waddle et al. 2010).

Although ecologists routinely test for pairwise corre-

lations of species abundances (Brown et al. 2004), there

has been relatively little use of null models with

abundance data. Some null model tests have been

applied to the analysis of relative abundance distribu-

tions (McGill et al. 2007), although these tests often use

just the row sums of the species abundance matrix. Null

model tests have been used with species abundance

matrices in which the columns represent sampling

periods rather than sites. In the 1980s, ecologists used

null model tests of these data to determine whether

species ranks remained concordant through time (Gross-

man 1982, Ebeling et al. 1990), which is an important

measure of community, persistence, and stability (Pimm
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