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the human microbiome, but do not specify the direction of
cause and effect.

Even in the absence of disease, microbiome diversity can
vary widely among human populations, among individuals
within a population, and among different microbiome
habitats within the same individual [6, 7, 9–11]. Although
different researchers may use different thresholds for clus-
tering and distinguishing OTUs (operational taxonomic
units) [12–18], it is generally accepted that in healthy
individuals, microbiomes of gut, oral and skin habitats
are relatively species-rich, whereas the microbiomes
of vaginal and lung habitats are relatively species-poor
[6–9, 11, 19–21]. In other words, different microbiome
habitats may have different core microbiota and different
baseline diversities, which, makes it rather challenging to
discover a general DDR pattern.

An additional challenge in comparing microbiome
diversity is that most species diversity indices are sensi-
tive to the sample size. In the existing literature, the term
“sample size” is often interchangeably used with several
other terms including sampling effort, sampling intensity,
sequencing coverage or sequencing depth. The first three
terms are often used in ecology in the discussion of rar-
efaction, and they are the counterparts of sequencing
coverage (depth) in microbial metagenomics. As the
sample size increases, the number of OTUs (operational
taxonomic units) recorded inevitably increases. This
problem is even more acute for studies of hyper-diverse
microbiomes [22] than it is for traditional studies of plant
and animal communities. Thus, some of the heterogeneity
among and within studies of human microbiomes
may reflect this source of statistical variation. Ecologists
have recognized this sampling problem for many decades
[23] and used rarefaction (a form of interpolation)
and asymptotic species richness estimators (a form of
extrapolation) to standardize biodiversity comparisons
[24–26].

Although existing studies on human MADs have rou-
tinely computed diversity indices, basic patterns of DDR
in human microbiomes are still not well established. Here
we re-analyze raw data from published studies in which
sequence counts or OTU tables were provided, allowing
for a rigorous statistical analysis of the patterns. We ask
two questions: (i) Is there evidence for a distinctive
microbiome composition in diseased versus healthy indi-
viduals, or could the differences in taxonomic composi-
tion (which inevitably include many rare OTUs) be
explained by simple sampling effects? (ii) Are there
consistent differences in the taxonomic diversity of dis-
eased and healthy individuals for different microbiome-
associated diseases?

To address the first question of microbiome species
composition, we used a randomization test for performing

shared species analysis (SSA). This test does not simply
compare the OTU richness or diversity of healthy and
diseased individuals, but instead quantifies the difference
in species composition (OTU identity) between the two
groups, which is a measure of beta diversity in terms of
[27]. To strengthen the rigor of the SSA, we designed two
algorithms (A1 & A2): A1 randomizes the assignments of
the individual reads (bacterial individuals) to the healthy
or diseased groups, and A2 randomizes the assignments
of the entire sample from a single subject (and its asso-
ciated reads) to the healthy or diseased groups. The dif-
ference between both the algorithms is that A1 treats the
individual reads as independent elements, whereas the
more conservative A2 treats the entire sample of reads
from a single subject as the independent sampling
element.

To answer the second question of microbiome species
diversity, we adopted Hill numbers as a unified measure of
community diversity ([25, 28, 29]). Hill numbers present a
series of values of Renyi



are rather scattered. The EMP (Earth Microbiome Project)
appears to have hosted the single largest database of the
human MADs, and we obtained approximately 2/3 of
the MAD case studies from EMP data depository. Indeed,
the datasets from EMP source include majority of the high-
profile MADs, including neuronal degenerative diseases,
IBD (inflammatory bowel disease), obesity, and diabetes.
One important advantage of EMP datasets is that they are
based on standardized sequencing operations and bioinfor-
matics analysis, which facilitated our meta-analyses of the
human DDR. We selected the remaining 1/3 of the case
studies from a variety of published sources with the goals of
(i) covering all five major microbiome habitats (gut, oral,
skin, lung and vaginal) as well as two important fluid
habitats (milk and semen) and (ii) representing the most
widely investigated MADs from individual research pub-
lications. Although our selected datasets are not exhaustive,
they are representative of state-of-the-art research in the
human MADs. A brief description of the MAD case studies
is provided in Table S1 of the online supplementary infor-

https://CRAN.R-project.org/package=compute.es
https://CRAN.R-project.org/package=compute.es


statistic from standard t-test values. If d > 0, the healthy
group has higher (standardized) diversity than the diseased
group, and vice versa if d < 0. Finally, we repeated the
entire meta-analysis using the unstandardized OTU counts
from each study to compare results with the meta-analysis
of the asymptotic estimators [38].

The d-statistic is calculated as:

d ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ n2

n1n2

r
; ð3Þ

where t is the t-value from standard t test, n1 and n2 are the
sample sizes of two treatments. Obviously, the d-statistic is
not influenced by the possible difference in the sample
sizes.

Statistical tests of shared species (OTUs)

The number of shared OTUs between healthy and diseased
individuals varied widely among studies, and depends in
part on the number of individuals per group and the number
of reads per individual sample. If there are distinctive OTUs
associated with the diseased and healthy state, then there
should be relatively few shared OTUs between these two
groups. Alternatively, if the same microbiome is associated
with healthy and diseased individuals, the distinctive OTUs
in each group would represent random sampling effects
(which are especially strong for rare or under-sampled taxa),
and the number of shared OTUs would be no different than
expected by chance (H0). This analysis compares the
composition, or beta diversity [27], of the treatments,
whereas the previous Hill number analyses above compare
the alpha diversity, or taxon richness, between treatments.

We used two algorithms to estimate the number of shared
OTUs expected under H0. In the first algorithm (A1), the
expected number of shared OTUs was generated by pooling
all the reads (bacterial individuals) within each study
(including the healthy and diseased treatments) together and
then randomly assigning each read to the healthy or dis-
eased category. A1 maintains the total number of reads in
each of the two original groups. In the second algorithm
(A2), we randomly assigned each microbiome sample in the
study to the diseased or healthy group, and then pooled the
reads within each of the randomized pseudo-groups. A2
maintains the numbers of microbiome samples in each of
the two original groups.

After randomization with A1 or A2, we then pooled the
reads within each pseudo-group and calculated the number
of shared OTUs between the two pseudo-groups. The ran-
domization was repeated 1000 times to generate a dis-
tribution of the expected number of shared OTUs under the
null hypothesis of random sampling (H0). We then com-
pared to the observed number of OTUs to the simulated
distribution to estimate the tail probability of obtaining the

observed results with random sampling p(# Shared OTUs|
H0) We converted these null model results into a standar-
dized effect size:

SES ¼ SOTUobs � mean SOTUsimð Þ½ �=sd SOTUsimð Þ ð4Þ
where SOTUobs = the observed number of shared OTUs,
mean(SOTUsim) = the average number of shared OTUs in
the 1000 simulated assemblages, and sd(SOTUsim) is the
sample standard deviation of the 1000 simulated assem-
blages. A detailed description on both A1 and A2 algorithms
is presented on the online supplementary information (OSI).

Results

Differences in microbiome diversity between
healthy and diseased individuals



Differences in shared OTUs between healthy and
diseased individuals

Table S3A (with



algorithm (reshuffling individuals) the observed number of
shared OTUs between healthy and diseased individuals was
significantly smaller than expected by chance. in 20 of 41
comparisons, and was smaller, but not statistically

significant in an additional 13 comparisons. Across all
comparisons, the SES for the number of shared OTUs
was statistically smaller than expected for both null
model algorithms [A1: mean (SES) =−71.956, one-sample
t-test =−3.076, p= 0.004; A2: mean (SES) =−2.24, one-
sample t-test =−5.027, p < 0.001] (Fig. 4).

Discussion

Until the recent decade, mainstream biomedicine has largely
ignored community ecology theory, but epidemiologists,
entomologists, and plant pathologists have been investi-
gating disease ecology for decades (e.g. [39–41]). In the
disease ecology of zoonoses (infectious diseases of animals
that can be transmitted to humans) [39–42], the idea that the
diversity of an ecological community may influence the
transmission and dynamics of pathogens can be traced back
to [43]. A fundamental premise was that persistence of a
pathogen often requires a minimum threshold of host
diversity for infections to occur. Recent studies have been
conducted to evaluate how the diversity of free-living spe-
cies (disease vectors such as mosquitoes) may influence the
transmission of established pathogens among suitable hosts,
in particular the transmission from wildlife to humans and
to husbandry animals [40, 41]. But a typical transmission
system of zoonoses can implicate three types of commu-
nities: hosts, vectors and pathogens (parasites).

Two prevalent hypotheses to explain complex DDR
relationships among these communities (which potentially
involve the diversities of three categories of interacting
communities) in zoonoses are the dilution effect and the
amplification effect. Dilution effects are anticipated to occur
when ecological communities of pathogens (parasites) are
nested in their occurrence in hosts, and interactions between
the pathogen and the most suitable hosts persist or increase
when biodiversity declines [39–42]. Amplification effects
refer to the opposite trend in which the rising host diversity
actually “amplifies” the pathogen (parasite) infections [41].
concluded that there is now clear empirical evidence sug-
gesting that biodiversity loss is associated with rising
transmission or disease severity for a wide range of
important pathogens of plants, wildlife and humans.

DDR relationships have also been investigated in plant
pathology and economic entomology (e.g., [44, 45]).



significance, in 14 of 27 comparisons (52%) healthy indi-
viduals had higher microbiome diversity than diseased
individuals. Moreover, results were not consistent for the
similar microbiome sites used in different studies. Overall,
the effect sizes in the 41 comparisons did not differ statis-
tically from an average effect size of 0 (one-sample t test =
−0.742, p = 0.463, q = 0). In contrast, Johnson et al. [41].
detected a disease effect in 87% of studies (we calculated
the percentage from their compilation, see Table S4),
although no standardization of data and no statistical tests
were applied.

However, this difference between human MAD data
and Johnson et al. [41]. compilation (see Table S4) in the
percentages of disease effects cannot be entirely attributed
to differences in statistical methods, because we obtained
virtually identical results for comparisons of untrans-
formed OTU data (Fig. 3). The consistency of our results
with standardized and unstandardized data probably
represents the fact that, within a study, the same sampling
methods and comparable sampling intensities (DNA
sequencing coverage) were used for diseased and healthy
individuals. Moreover, there was replicated, independent

sampling of individuals within groups. The concordance
of the raw and standardized results (Fig. 3) strengthens the
use of meta-analyses with standardized effect size mea-
surements. Moreover, the results were qualitatively con-
sistent for different diversity indices that weight the
contributions of rare and common species differently
(Table S2).

Our results do not imply there is no effect of disease on
diversity (or vice versa). Across most comparisons (40/41
for A1, 33/41 for A2), there were fewer shared OTUs than
expected by chance, suggesting that at least some OTUs
were consistently associated with the diseased versus the
healthy state. Although we failed to detect a consistent
pattern of changes in overall microbiome diversity, there
were reliable changes in the species composition of OTUs
associated with diseased and healthy individuals. Indeed,
the change of shared species should offer promising diag-
nosis indicators for human MADs. Further research,
including experimental studies with animal models, is
needed to decide whether the DDR patterns in humans is
atypical, or different from DDR patterns in zoonoses or crop
and forest diseases (pests). Our opinion is that human MAD



systems are rather different because, in many cases, the
human microbiome may not be a pathogen or etiological
cause at all. Mechanistic (etiological) understanding of
human MADs will take additional research, and we believe
establishing a formal theory of the DDR patterns for human
MADs at this time is still premature.

Data availability

All datasets analyzed in this study are available in public
domain and see Table S1 for the detailed access information
for each of the 27 datasets.
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