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 Th is review identifi es several important challenges in null model testing in ecology: 1) developing randomization algorithms 
that generate appropriate patterns for a specifi ed null hypothesis; these randomization algorithms stake out a middle 
ground between formal Pearson – Neyman tests (which require a fully-specifi ed null distribution) and specifi c process-based 
models (which require parameter values that cannot be easily and independently estimated); 2) developing metrics that 
specify a particular pattern in a matrix, but ideally exclude other, related patterns; 3) avoiding classifi cation schemes based 
on idealized matrix patterns that may prove to be inconsistent or contradictory when tested with empirical matrices that 
do not have the idealized pattern; 4) testing the performance of proposed null models and metrics with artifi cial test 
matrices that contain specifi ed levels of pattern and randomness; 5) moving beyond simple presence–absence matrices to 
incorporate species-level traits (such as abundance) and site-level traits (such as habitat suitability) into null model analysis; 
6) creating null models that perform well with many sites, many species pairs, and varying degrees of spatial autocorrelation 
in species occurrence data. In spite of these challenges, the development and application of null models has continued to 
provide valuable insights in ecology, evolution, and biogeography for over 80 years.   

   ‘ A null model is a pattern generating model that 
is based on randomization of ecological data or ran-
dom sampling from a known or imagined distribution. 
Th e null model is designed with respect to some eco-
logical or evolutionary process of interest ’ .    (Gotelli and 
Graves 1996) 

 From its origins in the analysis of species/genus ratios 
(J ä rvinen 1982), there is a long history of using null models 
to analyze patterns and test hypotheses in ecology, evolution 
and biogeography (Harvey et al. 1983). Although the gen-
eral controversy in the 1970s over null models and compe-
tition has died down (Gotelli and Graves 1996), there are 
still many disputed aspects of testing and implementing null 
models. In this paper, we review some of the more recent 
challenges and controversial issues in the implementation 
and interpretation of null models in ecology. We focus pri-
marily on the use of null models in biogeography, ecology, 
and macroecology.  

 Hypothesis testing and constraints in null 
model analysis 

 Classical Pearson – Neyman hypothesis testing (Graves 1978) 
addresses the dichotomy between a null hypothesis (H 0 ) and 
its alternative (H 1 ). If these hypotheses are mutually exclu-
sive and collectively exhaustive, then the probability that H 0  
is true, given the data ( P (H 0 |data)), is P(H 0 )  �  1  –   P (H 1 ). 

Th
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leads to excessive type II errors (Grant and Abbott 1980, 
Colwell and Winkler 1984). For this reason, Presley et al. 
(2010) recently advocated the use of the equiprobable –
 equiprobable model for testing for patterns of species distri-
butions. However, the poor performance of this algorithm 
in the context of nestedness (Ulrich and Gotelli 2007a) and 
species co-occurrence (Gotelli 2000, Ladau 2008), suggests 
there is a real danger in overestimating the frequency of 
signifi cant patterns by taking such a liberal approach. 

 Recently Kullback – Leibler information-based model 
choices have become popular as complementary approaches 
to classical hypothesis testing (Akaike 1973, Burnham and 
Anderson 2002). Information criteria assign probabilities 
to competing models with diff erent numbers of free para-
meters and thus allow for a ranking of models from best 
to worst (Anderson 2008). In the context of null model 
analysis, we might ask whether information criteria are 
capable of quantifying the information content of diff er-
ently constrained null models. However, a simplistic use 
of information criteria is problematic because we cannot 
equate the number of null model constraints with the num-
ber of free para meters necessary for calculating information 
metrics. Moreover, null models cannot simply be ranked 
additively by the number of constraints they contain, but 
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between the formal defi nition of a pattern and the working 
defi nition based on the index. 

 Th e history of the nestedness concept (Almeida-Neto 
et al. 2007, 2008, Ulrich et al. 2009) is a good example of 
how this mismatch of pattern and metric can cause confu-
sion. Patterson and Atmar (1986) originally defi ned nested-
ness as  ‘  that   the species comprising a depauperate fauna should 
constitute a proper subset of those in richer faunas  ’ . Th is defi ni-
tion of nestedness focuses on the species composition among 
sites, but does not consider the site composition among 
species. A proper nestedness metric should measure the 
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things, critics objected to the random placement of ranges 
within a bounded range because real ranges refl ect species 
interactions with the environment (Hawkins and Diniz-
Filho 2002). 

 However, the MDE served as a very eff ective null 
model because it excluded geographical gradients in histori-
cal eff ects or contemporary climate and demonstrated that 
species richness gradients can arise entirely from simple geo-
metric constraints (Colwell et al. 2004). Th ese constraints 
are a realistic alternative to the implicit null hypothesis in 
many correlative studies where species have no dispersal con-
straints and can occur in any grid cell within a domain that 
has appropriate climatic conditions (Gotelli et al. 2009). 
More recent analyses have used the range cohesion eff ect 
embodied in MDE in stochastic models that also include 
environmental eff ects (Rahbek et al. 2007). 

 For very large matrices, and for matrices sampled at large 
spatial scales, the homogeneity assumption cannot be justi-
fi ed and traditional null models should be applied with cau-
tion. Recently Navarro-Alberto and Manly (2009) showed 
that any diff erence either in occurrence probabilities of spe-
cies across sites (non-uniform column degree distributions) 
or species (non-uniform row degree distributions) causes 
some degree of spatial autocorrelation. Null models that do 
not correct for autocorrelation may therefore too often point 
to non-randomness. To our knowledge, the eff ect of autocor-
relation on matrix structure has not been studied system-
atically, although Ulrich (2004) demonstrated that a neutral 
model with limited spatial dispersal can generate binary 
presence–absence matrices that are statistically segregated. 
Autocorrelation in species occurrences should cause a ten-
dency towards matrix compartments with regions of higher 
and lower fi ll. For large matrices, even very small degrees 
of autocorrelation will be identifi ed as being signifi cant 
(Burnham and Anderson 2002). 

 A second type of autocorrelation is the repetition og]TJ
T*
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