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ABSTRACT

Ecologists and biogeographers are currently expending great effort forecasting

shifts in species geographical ranges that may result from climate change. How-

ever, these efforts are problematic because they have mostly relied on presence-

only data that ignore within-species genetic diversity. Technological advances

in high-throughput sequencing have now made it cost-effective to survey the

genetic structure of populations sampled throughout the range of a species.

These data can be used to delineate two or more genetic clusters within the

species range, and to identify admixtures of individuals within genetic clusters

that reflect different patterns of ancestry. Species distribution models (SDMs)

applied to the presence and absence of genetic clusters should provide more

realistic forecasts of geographical range shifts that take account of genetic vari-

ability. High-throughput sequencing and spatially explicit models may be used

to further refine these projections.
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INTRODUCTION

A major ecological research programme in this new millen-

nium is to understand the consequences of global climate

change for populations and communities (Parmesan, 2006;

Burrows et al., 2011). A more specific focus within that pro-

gramme is to build species distribution models (SDMs; Elith

& Leathwick, 2009) that predict the probability of occurrence

of a species in contemporary climatic and geographical space

(Peterson et al., 2011). The output of a SDM can then be

combined with projections of future (or past) climatic condi-

tions to forecast (or hindcast) shifts in the occurrence and

geographical range of a species (Williams et al., 2013; Bur-

rows et al., 2014). These projected range maps represent the

elemental building blocks for understanding how potentially

novel assemblages of species will interact in future climates

(Blois et al., 2013) and what kind of ecosystem functions

(Cramer et al., 2001) and services (Olesen & Bindi, 2002)

they may provide.

This Perspective will be divided into two parts. In the first

part, we briefly review current practices in species distribution

modelling (Elith & Leathwick, 2009), and a recent controversy

over two competing algorithms – MaxEnt (maximum

entropy) and MaxLike (maximum likelihood) – that are used

to estimate the probability of species occurrence. Our conten-

tion is that neither of these algorithms is optimal because they

both are used mostly with presence-only data, which makes

the estimation process complicated and the output uncertain.

More generally, standard SDM methods applied to presence-

only species occurrence records cannot easily accommodate

the possibility of local adaptation (Thuiller et al., 2013) and

evolutionary change within different parts of a species geo-

graphical range (Atkins & Travis, 2010).

In the second part of this essay, we suggest ways that stan-

dard genetic methods (Pritchard et al., 2000) and recent

technological advances in high-throughput sequencing (Mar-

dis, 2011) can be combined with traditional field surveys to

build new SDMs that incorporate genetic variation within a

species geographical range. We also highlight a few recent

studies that are moving in this direction. Our main argu-

ment is that existing methods that are based on presence-

only occurrence records are statistically fragile, and they do

not allow us to explore the hypothesis that current genetic

variation can predict future responses to climate change.

Both problems can be addressed by building forecasting

models that are based on genetic data.
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SPECIES DISTRIBUTION MODELS

Species distribution modelling has its roots in wildlife studies

of animal–habitat associations (Scott et al., 2002) that were

themselves based on a conceptual framework of the Grinn-

elian niche as a spatial model of animal abundance (James,

1971). The SDM framework emerged over a period of several

decades, in concert with the development of GIS (Goodchild,

2003) and the availability of georeferenced environmental

data layers (Beaumont et al., 2005), an expanding collection

of multivariate (McGarigal et al., 2000) and geostatistical

(Diggle & Ribeiro, 2007) modelling tools and the ever-

increasing speed and storage capacity of personal and main-

frame computers, combined with the recent success of R (R

Core Team, 2013) and other open-source software platforms

(Neteler et al., 2012). SDMs have received greater attention

in the past decade as a collective sense of societal and scien-



MaxEnt, MaxLike and other complex, non-intuitive alter-



et al., 2002). For ecologists, AFLPs may be the easiest

because they require no species-specific information and

allow for screening many loci at a low cost (Gugerli et al.,



of a species, and thus how much additional ‘absence’ data

should be included in the statistical analysis. On the one

hand, including lots of absence data may tend to lead to

over-fitting of climatic variables and simply demonstrate that

temperate species are unlikely to occur in tropical areas

(Bahn & McGill, 2007). Data sets with too many absence val-

ues from extreme climate regions may also obscure effects of

metapopulation dynamics (Hanski & Ovaskainen, 2000), lim-

ited dispersal (Fenster et al., 2003), philopatry (Weatherhead

& Forbes, 1992) and other endogenous processes that can be

expressed as spatial autocorrelation. As Bahn & McGill

(2007) have shown, models of spatial variation in abundance

of North American birds that contain only spatial autocorre-

lation can often outperform species distribution models that

include standard climate variables and assume that samples

are statistically independent of one another.

On the other hand, many climate models do forecast

strong changes in abiotic variables over the next century,

leading to the possibility of no-analogue climates and com-

munities (Urban et al., 2012), for which there is already

abundant evidence from the fossil record (Williams et al.,

2013). Thus, some effort should be made to include more

spatially varied sampling to encompass some of the potential

conditions that arise from these forecasts. Whatever decision

is made about sampling, forecasting models should certainly

explore the consequences of including versus excluding

absence data or training data that are collected beyond the

current range boundaries of a species (Radosavljevic &

Anderson, 2014).

MODELLING SPECIES RANGE LIMITS WITH

GENETICALLY DISTINCT CLUSTERS

Although a variety of methods can be used to estimate the

probability of species occurrence with simple presence/

absence data, we favour a GLM with a binomial distribution

and a logit link function (McCullagh & Nelder, 1989). This

model properly captures the variance structure of presence/

absence data, allows for model selection with the Akaike

information criterion (AIC) for a variety of linear or polyno-

mial predictor variables, and allows for modelling of spatial

autocorrelation [see Zuur et al. (2009) for details and exten-

sions]. At the level of individual genetic markers, Joost et al.

(2007) use similar regression approaches for associations of

allelic frequencies at marker loci and environmental variables.

This kind of model could be applied separately to each

genetic cluster, raising the interesting possibility that differ-

ent clusters may be best fit with different sets of predictor

variables. The prediction for each of the m clusters is Pkj, the

probability that cluster k is present in location j. To forecast

range shifts under climate change, the set of prediction sites

can be expanded beyond the original set of sites where the

data were collected.
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