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biodiversity, ecosystem services and hypothesized driver

variables are among the strongest possible evidence for

causal links. Moreover, temporal studies of biodiversity

are essential for forecasting future change in community

structure and ecosystem function.

We begin by discussing key characteristics of biodiver-

sity time series, presenting details on the advantages and

limitations of different data sources in the electronic sup-

plementary material. Second, we address the quantitative

analysis of biodiversity time series, identifying four main

factors affecting observed biodiversity temporal change:

measurement error, process error, systemic change and

historical influence. We discuss methods used to estimate,

quantify or (when appropriate) minimize these sources of

change. Third, we highlight approaches and potential pit-

falls in forecasting biodiversity change, on the basis of

inferences drawn from past trends. We are restricted to

time series of one (any) quantitative metric of biodiversity.

We are purposely agnostic about which metric, and illus-

trate that the same analysis tools can be used for different

metrics. We highlight that anecdotal evidence and histori-

cal records can provide important information, which

need only be translated into a quantitative assessment

for these tools to be useful for this sort of data.
2. CHARACTERISTICS OF TEMPORAL
BIODIVERSITY DATA
A biodiversity time series documents the abundances (or at

least presence–absence) of multiple genes, traits or taxa

at multiple points in time. Taxa—species, in particular—are

the most common units of diversity, but most of the methods

we discuss are also applicable to other units of diversity (see

figure 1 and electronic supplementary material, figures S4

and S5 for an illustration of this point). These data are typi-

cally used to estimate one or more biodiversity metrics at

each time point. Common diversity metrics include species

richness (the total number of spe
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temporal resolution. Increased census interval tends to be

associated with increased temporal turnover [21,22].
3. ANALYSING TEMPORAL CHANGE
Regardless of the methods used to gather data (see the elec-

tronic supplementary material), observed temporal change

in biodiversity can be attributed to four main factors:

measurement error, process error, historical influence and

systemic change. Measurement error includes sources of
apparent change that reflect bias or imprecision in measure-

ment (including detection error), and can reduce our

ability to identify patterns of interest. Process error refers

to mechanisms that are not included in the model, and is

different from measurement error. Historical influence

is reflected in the patterns of temporal autocorrelation of

the biodiversity time series. Typically, we are interested in

understanding the effects of particular drivers of interest

on systemic change. Systemic change reflects a non-

stationary system in which there are long-term changes in
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ecological drivers, both anthropogenic (ongoing climate

change and increases in nutrient deposition) and natural

(shorter-term successional change and long-term changes

in speciation and extinction rates). Temporal change due

to other drivers may occur as a result of process error,

and this partitioning depends on the questions being

addressed. Explicitly recognizing sources of error allows

the investigator to statistically control for these when test-

ing for systemic change in a biodiversity time series (see

the electronic supplementary material, figure S1 for an
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particularly informative in assessing causality because

the timing of events makes it possible to deduce the direc-

tion in which information is being transferred [48]. Both

temporal and spatial data are affected by autocorrelation,

with points closer in space or time on average more simi-

lar than distant points. As a result, at least in realistic

ecological situations, variability typically increases with

increasing extent [49]. However, the nature of autocorrela-

tion differs between time and space in three subtle ways.

First, a focal point in space can influence and be influenced

by nearby points in three dimensions, whereas a focal point

in time can be influenced only by points that precede it and

can only influence points that follow it chronologically.

This does not necessarily mean that spatial autocorrelation

is stronger, because effects on a focal point from different

directions can be counteracting. Because of the three

dimensions, there is also the possibility of anisotropy

(different covariances in different directions) in space but

not in time. Second, the underlying autocorrelation in

time, arising at least in part because some or all organisms
survive into the next time period, is generally intrinsically

stronger than any type of spatial influence, where the

most direct causal factor is dispersal or environmental auto-

correlation. Third, from an empirical point of view, cycles

are common and important in temporal but rare in spatial

autocorrelation patterns.

In practice, the study of autocorrelation in space and

time typically differs in three ways. First, temporal data

are typically collected at constant time intervals, allowing

easy calculation of lags between points, whereas spatial

variables are often recorded at irregular locations distribu-

ted continuously in space, requiring the use of techniques

such as binning distances to estimate variograms. Second,

for historical reasons, variograms (based on variance) are

typically used for spatial autocorrelation, while correlo-
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regression. Among many statistical models, generalized

additive models (GAMs) [66] are widely used to fit

smooth curves or surfaces to data over time for this pur-

pose. GAMs extend generalized linear models and

assume additive relationships among the effects of predic-

tors, allowing data to determine the (generally nonlinear)

relationship between the response variable and the set of

predictors (see electronic supplementary material for

more detail and extension into the spatio-temporal case).

A common method for short-term trend models is to use

cubic regression splines to construct each smooth function,

applying the penalized regression spline technique [67],

which controls the degree of smoothness by adding a pen-

alty to the likelihood function. This model usually provides

a better fit than parametric linear or quadratic models.

Many other smoothing methods are available, including

piecewise regression, kernel methods, LOESS (locally

weighted polynomial regression), running-mean (or run-

ning-median) smoothers, classification and regression

tree, and multivariate adaptive regression splines [66,68].

Figure 1c shows two local models (LOESS and GAM

with splines) fitted to the fossil shell size diversity time

series. A comparison with figure 1b illustrates the comp-

lementary nature of global and local models: despite a

long-term increase in diversity of this trait, the rate of

change has not been constant.

Non-parametric smooth functions are not only suffi-
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pressures upon ecosystems, generating novel systems [80]

that function differently, as the pool of functional traits

changes [81], and combinations of environmental vari-

ables arise that have no contemporary analogues [82].

In many cases, palaeo-climates encompass a greater

range of projected conditions and may provide important

clues for expected biotic responses [83]. These issues

create challenges for predicting biodiversity trends that

require us to understand the mechanisms driving diversity

and call for placing greater statistical weight on datasets

that better represent the anticipated change.
5. CONCLUSIONS
Availability of long-term, large-scale, high-resolution data

is the single most important factor limiting progress in

understanding temporal patterns in biodiversity. Given

the difficulty of obtaining data from the past, we reiterate

the appeal to preserve data and associated metadata in

publicly accessible archives [84]. Public databases of bio-

diversity records are providing unprecedented insight into

large-scale, long-term patterns (e.g. Paleobiology data-

base—http://paleodb.org, Global Biodiversity Information

Facility—http://data.gbif.org/). Establishing standards for

meta-information should ensure that future scientists can

not only access but also take full advantage of the data we

are now collecting [85]. The challenges that arise from deal-

ing with historical data (see the electronic supplementary
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