


et al. (2006), Gotelli and Colwell (2011), Gotelli and
Chao (2013) and Chao and Chiu (2016) for various
applications. For two assemblages, shared species rich-
ness plays an important role in assessing assemblage
overlap and forms a basis for constructing various types
of beta diversity and (dis)similarity measures, such as
the classic Serensen and Jaccard indices (Colwell and
Coddington 1994, Magurran 2004, Jost et al. 2011,
Gotelli and Chao 2013). Compared with estimating spe-
cies richness in a single assemblage, the estimation of
shared species richness, taking undetected species into
account, has received relatively little attention; see Chao
and Chiu (2012) for a review.

In traditional measures of species diversity, all species
(or taxa at some other rank) are considered to be equally
distinct from one another. Species differences can be
based directly on their evolutionary histories, either in
the form of taxonomic classification or well-supported
phylogenetic trees. A rapidly growing literature addresses
phylogenetic diversity metrics and related (dis)similarity
measures; see Cavender-Bares et al. (2012) for a review.
A widely used phylogenetic metric is Faith’s (1992) PD
(phylogenetic diversity), which is defined as the sum of
the branch lengths of a phylogenetic tree connecting all



For species diversity, we apply the Good-Turing for-
mula to intuitively derive an estimator of the number of
undetected species in an assemblage. The resulting esti-
mator turns out to be the Chao (1984) non-parametric
lower bound. The two-assemblage generalized formula
yields Pan et al.’s (2009) lower bound of the number of
undetected shared species when a sample of individuals
is taken from each of two assemblages. For phylogenetic
diversity, the unified approach yields a recently pub-
lished estimator of undetected PD in a single assemblage



In other words, o, should be estimated by r*/n, where
r* = (r + 1)f,+1lf,. The Good-Turing frequency formula is
thus contrary to most people’s intuition because the esti-
mator in (1c) depends not only on the sample frequency r
of the focal species, but also on the frequency information
derived from species in the next frequency class,  + 1.

Good (1953) used a fully Bayesian approach to theoret-
ically justify the formula (1c), whereas Robbins (1968)
derived it as an empirical Bayes estimator. Good (2000)
wrote “when preparing my 1953 article, | had forgotten
Turing’s somewhat informal proof in 1940 or 1941, which
involved cards or urn models in some way, and | worked
out a separate proof [Bayes estimator]. | still don’t recall
Turing’s proof.” Nevertheless, Good (1983, p. 28) pro-
vided a very intuitive non-Bayesian justification of the
Good-Turing frequency formula as follows: Given an
original sample of size n, consider the probability of the
event that the next individual will be a species that had
appeared r times in the original sample. (Mathematically,
this probability is simply Z,ilpil(Xi =r)=o,f, as
defined in Eq. 1a.) If this event occurs, then the species to
which the additional individual belongs must appear
r + 1 times in the enlarged sample of size n + 1. Because
the order in which individuals were sampled is assumed
to be irrelevant, the total number of individuals in the
enlarged sample of size n + 1 for those species (that
appeared in the additional individual and had appeared r
times in the original sample) is (r + 1)f,+1. Thus, the
probability of the aforementioned event in the enlarged
sample of size n + 1is (r + 1)f,+1 /(n + 1), which can be
approximated by (r+1)f,11/n if n is large enough.
Dividing this by the number of such species, f,, we obtain
the mean relative abundance of those species, which is the
classic Good-Turing frequency formula as given in
Eqg. (1c). Chiu et al. (2014b) proposed an improved for-
mula &, shown below forr =0, 1, 2, ...,
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This improved estimator generally has smaller mean
squared error than the original Good-Turing estimator.
In our subsequent derivation, we adopt the rightmost
term in Eq. (1d); a simple non-Bayesian proof is pro-
vided (in Appendix S1) to facilitate the generalization to
the two-assemblage case.

Undetected species richness

Statistically, species richness (observed species plus the



Notice that, in the above derivation, if ay~d; (i.e.,
undetected species and singletons have identical mean rel-
ative abundances), then the inequality sign in Eq. (2c)



mean of the products among all such shared species
(there are f,. such shared species) can be expressed as
Ol = Zf:lzlpilpizl(%l =T, A/1'2 = r)/ﬁ)’i r= 01 lx 2...
The following generalized two-assemblage Good-Turing
formula provides an estimator for ¢,, (see Appendix S1
for a proof):

N r+
Oy = (



sample that are descended from branch i. Then we can
expand the set of observed species abundances to a lar-
ger branch abundance set {X;, i=1, 2, ..., B} with
(X



Undetected shared PD bet/ een t’ o assemblages

Following the approach to the two-assemblage model
formulation and the data framework described in the
section TV o-assemblage Good-T, jring Form’-rlas, we
assume that all S species of the pooled assemblage are
indexed by 1, 2,






that proposed in Eq. (8d) can be applied to each of the
three terms. The variance and confidence interval associ-
ated with this estimator follow directly from those for
the Chaol-shared estimator. Under the condition that
undetected species and singletons have approximately
homogenous abundances, the Chaol-FAD estimator is
nearly unbiased for any given species-pairwise distance
matrix.

A summary of formulas and descriptions for estimat-
ing shared species richness and FAD is given in
Appendix S3: Table S1, where the analogy between the
estimation procedures of the two measures can be seen.
Chao et al. (2014a) define a “functional entity” as a spe-
cies pair with one unit of distance between the two spe-
cies. In FAD, a functional entity plays the same role as a
“shared species” between two assemblages. For example,
a species-pair with distance d; = 5 is counted as 5
“shared species” (i.e., 5 functional entities). Thus the
measures of total distances of species pairs, {Fw F..,
Fi, Fesir,y =0,1,2,...3, play the same roles as the
counts of shared species richness {f, , fi+, f+ , fesi 1
y = 0,1,2,...} (defined in Egs. 4a - 4d).

Undetected shared FAD bet/ een t/ o assemblages

Under the two-assemblage model formulation and
data framework described in the section 7V o-assem-
blage Gaod—T":ring Form":las, we further assume that
the functional distance between the i
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species (including 110 singletons and 48 doubletons)
among 1794 individuals in the data from the Edge habi-
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CoNcLusioN AND Discussion

We have generalized the original one-assemblage Good-
Turing frequency formula (Egs. 1c and 1d) to the case of
two assemblages (Eq. 5¢), and also extended it to a phylo-
genetic version (Eqgs. 8b and 10b) as well as a functional
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A similar procedure can be applied to FAD and other


https://doi.org/10.1111/2041-210X.12768

Transactions of the Royal Society of London B - Biological
Sciences 345:101-118.

Colwell, R. K., A. Chao, N. J. Gotelli, S.-Y. Lin, C. X. Mao,
R. L. Chazdon, and J. T. Longino. 2012. Models and estima-
tors linking individual-based and sample-based rarefaction,
extrapolation and comparison of assemblages. Journal of
Plant Ecology 5:3-21.

Diaz, S., and M. Cabido. 2001. Vive la différence: plant func-
tional diversity matters to ecosystem processes. Trends in
Ecology and Evolution 16:646-655.

Faith, D. P. 1992. Conservation evaluation and phylogenetic
diversity. Biological Conservation 61:1-10.

Ferrier, S., G. Manion, J. Elith, and K. Richardson. 2007. Using
generalized dissimilarity modelling to analyse and predict
patterns of beta diversity in regional biodiversity assessment.
Diversity and Distributions 13:252-264.

Good, I. J. 1953. The population frequencies of species and the
estimation of population parameters. Biometrika 40:237-264.

Good, I. J. 1983. Good thinking: the foundations of probabil-
ity and its applications. University of Minnesota Press,
Minneapolis, USA.

Good, I. J. 2000. Turing’s anticipation of empirical Bayes in
connection with the cryptanalysis of the naval enigma. Jour-
nal of Statistical Computation and Simulation 66:101-111.

Good, 1. J, and G. Toulmin. 1956. The number of new species
and the increase of population coverage when a sample is
increased. Biometrika 43:45-63.

Gotelli, N. J,, and A. Chao. 2013. Measuring and estimating
species richness, species diversity, and biotic similarity from
sampling data. Pages 195-211 in S. A. Levin, editor. Encyclo-
pedia of biodiversity. Second edition. Volume 5. Academic
Press, Waltham, MA, USA.

Gotelli, N. J,, and R. K. Colwell. 2011. Estimating species rich-
ness. Pages 39-54 in A. Magurran, and B. McGill, editors.
Biological diversity: frontiers in measurement and assess-
ment. Oxford University Press, Oxford.

Gotelli, N. J,, and D. J. McCabe. 2002. Species co-occurrence: a
meta-analysis of .M. Diamond’s assembly rules model. Ecol-
ogy 83:2091-2096.

Gotelli, N. J, R. M. Dorazio, A. M. Ellison, and G. D. Gross-
man. 2010. Detecting temporal trends in species assemblages
with bootstrapping procedures and hierarchical models. Philo-
sophical Transactions of the Royal Society B 365:3621-3631.

Hortal, J, P. A. V. Borges, and C. Gaspar. 2006. Evaluating the
performance of species richness estimators: sensitivity to sam-
ple grain size. Journal of Animal Ecology 75:274-287.

Hsieh, T. C., and A. Chao. 2017. Rarefaction and extrapolation:
making fair comparison of abundance-sensitive phylogenetic
diversity among multiple assemblages. Systematic Biology
66:100-111.

Jesus, R. M., and S. G. Rolim. 2005. Fitossociologia da floresta
atlantica de tabuleiro em Linhares (ES). Boletim Técnico SIF
19:1-149.

Jost, L., A. Chao, and R. Chazdon. 2011. Compositional simi-
larity and beta diversity. Pages 66-84 in A. Magurran, and
B. McGill, editors. Biological diversity: frontiers in measure-
ment and assessment. Oxford University Press, Oxford, UK.

Lozupone, C., and R. Knight. 2005. UniFrac: a new phyloge-
netic method for comparing microbial communities. Applied
and Environmental Microbiology 71:8228-8235.

Magnago, L. F. S., D. P. Edwards, F. A. Edwards, A. Magrach,
S. V. Martins, and W. F. Laurance. 2014. Functional
attributes change but functional richness is unchanged after
fragmentation of Brazilian Atlantic forests. Journal of Ecol-
ogy 102:475-485.

Magurran, A. E. 2004. Measuring biological diversity. Black-
well, Oxford, UK.

Matos, F. A. R., L. F. S. Magnago, M. Gastauer, J. M. B. Car-
reiras, M. Simonelli, J. A. A. Meira-Neto, and D. P. Edwards.
2017. Effects of landscape configuration and composition on
phylogenetic diversity of trees in a highly fragmented tropical
forest. Journal of Ecology 105:265-276.

McGrayne, S. B. 2011. The theory that would not die: how
Bayes’ rule cracked the enigma code, hunted down Russian
submarines, and emerged triumphant from two centuries of
controversy. Yale University Press, New Haven, USA.

Pan, H. Y., A. Chao, and W. Foissner. 2009. A non-parametric
lower bound for the number of species shared by multiple
communities. Journal of Agricultural, Biological and Envi-
ronmental Statistics 14:452-468.

Paula, A., and J. J. Soares. 2011. Estrutura horizontal de um
trecho de Floresta Ombroéfila Densa das Terras Baixas na
Reserva Bioldgica de Sooretama, Linhares, ES. Revista Flor-
esta 41:321-334.

Rangel, T. F, R. K. Colwell, G. R. Graves, K. Fucikov4, C.
Rahbek, and J. A. F. Diniz-Filho. 2015. Phylogenetic uncer-
tainty revisited: Implications for ecological analyses. Evolu-
tion 69:1301-1312.

Robbins, H. E. 1968. Estimating the total probability of the


http://onlinelibrary.wiley.com/doi/10.1002/ecy.2000/suppinfo
http://onlinelibrary.wiley.com/doi/10.1002/ecy.2000/suppinfo

