

What is recursion?
You may think of recursion as a programming structure where a function calls
itself. We call such a function a recursive function.

Many algorithms can be implemented using recursion.

function

2

What is recursion good for?
• Recursion can provide an elegant solution which breaks a problem down into

smaller parts.

• Recursion is used in numeric calculations, tree traversals, and many other
applications.

• Recursion can solve problems without requiring an explicit loop.

3

Recursive function to calculate n!
int factorial(int n) {

 if ((n == 0) || (n == 1)) {

 // recall 0! is defined to be 1

 return 1;

 } else {

 return n * factorial(n - 1);

 }

}

5

Recursive function to calculate n!
int factorial(int n) {

 if ((n == 0) || (n == 1)) {

 // recall 0! is defined to be 1

 return 1;

 } else {

 return n * factorial(n - 1);

 }

} Here's the recursion

6

Recursive function to calculate n!
int factorial(int n) {

 if ((n == 0) || (n == 1)) {

 // recall 0! is defined to be 1

 return 1;

 } else {

 return n * factorial(n - 1);
 }

}

What's all this?

7

Recursive function to calculate n! (incorrect)
int factorial(int n) {

 return n * factorial(n - 1);

}

What happens if we call this function?

8

Recursive function to calculate n! (incorrect)
int factorial(int n) {

 return n * factorial(n - 1);

}

Let's say we call this function, providing the value 5 as an input parameter.

This will calculate 5 ⨉ 4 ⨉ 3 ⨉ 2 ⨉ 1 ⨉ 0 ⨉ -1 ⨉ -2 ⨉ -3 ⨉ -4... etc.

9

Recursive function to calculate n! (incorrect)
int factorial(int n) {

 return n * factorial(n - 1);

}

Let's say we call this function, providing the value 5 as an input parameter.

This will calculate 5 ⨉ 4 ⨉ 3 ⨉ 2 ⨉ 1 ⨉ 0 ⨉ -1 ⨉ -2 ⨉ -3 ⨉ -4... etc.

This will never terminate!

10

Recursive function to calculate n!
int factorial(int n) {

 if ((n == 0) || (n == 1)) {

 // recall 0! is defined to be 1

 return 1;

 } else {

 return n * factorial(n - 1);

 }

}

Base cases

In addition to the recursive case, a recursive function must have one (or
more) base cases, that provide termination criteria for the function.

11

The parts of a recursive function
A recursive function must have

• a recursive case, and

• one or more base cases (without recursion)

The recursive case breaks the problem down into smaller instances. The
base cases provide termination criteria, breaking the chain of recursion and
preventing infinite regress.

12

The Fibonacci function
Another classic example of recursion is the Fibonacci function.  
 
The Fibonacci sequence starts with 0, 1, and then calculates subsequent terms
by taking the sum of the previous two terms in the sequence. So a Fibonacci
number, denoted Fn where n is an index, is calculated thus

13

The Fibonacci function
Another classic example of recursion is the Fibonacci function.  
 
A Fibonacci sequence starts with 0, 1, and then calculates subsequent terms by
taking the sum of the previous two terms in the sequence. So a Fibonacci
number, denoted Fn where n is an index, is calculated thus

Base cases

14

The Fibonacci sequence
Using the deÞnition given, we may calculate the Fibonacci sequence!

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...!

16

Fibonacci in C++
Here's the Fibonacci function to return the nth Fibonacci number, implemented in C++: 

int fibonacci(int x) {

 if (x == 0) || (x == 1) {

 return(x);

 } else {

 return(fibonacci(x - 2) + fibonacci(x - 1));

 }

}

17

Fibonacci in C++
Here's the Fibonacci function to return the nth Fibonacci number, implemented in C++: 

int fibonacci(int x) {

 if (x == 0) || (x == 1) {

 return(x);

 } else {

 return(fibonacci(x - 2) + fibonacci(x - 1));

 }

}

18

Fibonacci in C++
Here's the Fibonacci function to return the nth Fibonacci number, implemented in C++: 

int fibonacci(int x) {

 if (x == 0) || (x == 1) {

 return(x);

 } else {

 return(fibonacci(x - 2) + fibonacci(x - 1));

 }

}

19

What's the downside?

Summary
• Recursion is an elegant approach to break a problem down into smaller

instances and solve by recurring calculation.

• Recursive functions are functions that call themselves.

• Recursive functions require a recursive case and at least one base case.

• While elegant, they may not be the most efficient approach, so use with
caution.

21

