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Abstract. Section 112(m) of the 1990 Clean Air Act Amendments, referred to as the Great Waters Pro-
gram, mandated an assessment of atmospheric deposition of hazardous air pollutants (HAPs) to Lake
Champlain. Mercury (Hg) was listed as a priority HAP and has continued to be a high priority for a
number of national and international programs. An assessment of the magnitude and seasonal variation of
atmospheric Hg levels and deposition in the Lake Champlain basin was initiated in December 1992 which
included event precipitation collection, as well as collection of vapor and particle phase Hg in ambient air.
Sampling was performed at the Proctor Maple Research Center in Underhill Center, VT. The range in the
annual volume-weighted mean concentration for Hg in precipitation was 7.8–10.5 ng/l for the 11-year
sampling period and the average amount of Hg deposited with each precipitation event was 0.10 lg/m2.
The average amount of Hg deposited through precipitation each year from 1993 to 2003 was 9.7 lg/m2/yr.
A seasonal pattern for Hg in precipitation is clearly evident, with increased Hg concentrations and
deposition observed during spring and summer months. While a clear trend in the 11-year event deposition
record at Underhill was not observed, a significant decrease in the event max-to-monthly ratio was ob-
served suggesting that a major source influence was controlled over time. Discrete precipitation events were
responsible for significant fractions of the monthly and annual loading of Hg to the forested ecosystem in
Vermont. Monthly-averaged temperatures were found to be moderately correlated with monthly volume-
weighted mean Hg concentrations (r2=0.61) and Hg deposition (r2=0.67) recorded at the Vermont site.
Meteorological analysis indicated the highest levels of Hg in precipitation were associated with regional
transport from the west, southwest, and south during the warmer months.
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incorporated a glass vapor lock, attached to a 1 l
Teflon sample bottle. The trace element sampling
train was comprised of a polypropylene funnel
(collection area of 167 ± 7 cm2) and a polypro-
pylene adapter attached to a 1-l polypropylene
sample bottle. The collection of Hg and trace ele-
ments directly into separate sample bottles was
also important due to the absorptive behavior of
trace metals in precipitation to the walls of the
bottles (Church et al., 1984). While samples for
both trace elements and Hg were collected for
each event, only the long-term Hg record is reported
in this manuscript.

Mercury samples were oxidized with concen-
trated BrCl to a 1% solution (v/v) and were
stored in a dark cold room before being ana-
lyzed. Post oxidation of the Hg samples and
acidification of the trace element samples to a
pH <1.5 prohibits absorptive loss to the con-
tainer walls (Subramanian et al., 1978; Scudlark
et al., 1991). The sampling trains were supported
in the UM Modified MIC-B collector by a UM
custom-built acrylic insert. The volume of each
precipitation sample was determined gravimetri-
cally. Precipitation events ‡ 0.1 cm in depth were
efficiently collected by the MIC-B. Precipitation
only overflowed the collection bottle for rela-
tively large events >5.6 cm. The funnels had



Results

Event wet deposition
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the low pressure system, was from the west-
southwest from the areas of stagnation on the
previous day. Interestingly, a large precipitation
event with 5.3 cm of rainfall was also recorded
only 5 days earlier, but had a below average
concentration of 3.8 ng/l, resulting in a Hg
deposition of only 0.2 lg/m2. These single large
deposition events (>0.4 lg/m2) can account for
20–60% of the monthly deposition, 5–17% of the
total annual deposition recorded at this site, and
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this region, and may also be reflective of the types
of clouds and storms that bring precipitation to
northern Vermont during the summer relative to
the winter. The 11-year plot for total monthly Hg
wet deposition recorded at the PMRC site is
shown in Fig. 3. The monthly volume-weighted
concentration plot, not shown, looked similar to
the deposition plot with similar monthly trends
and year-to-year differences in the monthly con-
centrations.

While little year-to-year difference was observed
in the minimum monthly Hg wet deposition, the
maximum monthly total varied greatly from year
to year. Calendar year 1998 was a particularly
significant year for Hg wet deposition. This was
largely due to three well-above average deposition
months (June–August) during the spring–summer
period which recorded large individual events
(>0.4 lg/m2) in each of the months. There did
not, however, appear to be an overall increase or
decrease in the Hg concentrations over time. This
will be examined more closely in the subsequent
discussion.

The seasonal variability in Hg concentrations
and Hg deposition has been reported in previous
studies in North America (Burke et al., 1995;
Hoyer et al., 1995; Landis and Keeler, 1997) and
Europe (Iverfeldt, 1991). The larger data set from
Underhill provides a clearer picture of how the Hg



winter seasons. The highest concentrations of Hg
were more common during the spring and summer
seasons rather than in winter or autumn. Samples
collected during the summer were more likely to
have concentrations in the 10–15 ng/l range.

The frequency distribution for Hg measured in
event wet deposition samples for each season is
shown in Fig. 5. Lower Hg wet deposition
amounts were more frequent during the autumn

and winter, and higher Hg values were typically
present during the spring and summer. The
majority (>43%) of all event samples collected
resulted in Hg deposition in the range 0–0.05 lg/m2

with another 25% of the events having values in
the 0.05–0.1 lg/m2 range. Less than 5% (N = 39)
of the event samples resulted in Hg deposition
>0.4 lg/m2, however, these events contributed to
19% of the total deposition recorded at the

Figure 5. Frequency distribution of seasonal Hg wet deposition measured in precipitation at Underhill, VT from 1993–2003

(N = 1111).

Figure 4. Frequency distribution of seasonal Hg concentration measured in precipitation at Underhill, VT from 1993–2003

(N = 1111).
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Underhill site over the 11-year period. Each of these
events had both above average Hg concentrations
as well as above average precipitation depths. All
of the 39 precipitation events that resulted in Hg
deposition values above 0.4 lg/m2 were in the



events, the highest of any year. However, 1998
recorded a much higher precipitation total,
implying that the 1998 events were more intense
that the 1993 events. In contrast, 2001 had both
lowest yearly precipitation depth (85 cm) and the
smallest number of events (71).

The volume-weighted mean Hg concentration
varied over each year as well, with a maximum
value of 10.0 ng/l calculated for 2001 and a mini-
mum of 7.8 ng/l in 1999. The volume-weighted
mean for all years was 8.7 ng/l and the average
total Hg deposition for the eleven-year period was
9.7 lg/m2. It is important to note the high volume-
weighted mean concentrations in 1993, 1997, 1998,
and 2001. While 1998 received the highest precip-
itation of any year over the 11-years, 1997 and
2001 received less than average (=109.1 cm) pre-
cipitation amounts. During 1998, 13.3 lg/m2 of
Hg deposition was recorded, and this was also
the second highest deposition year for sulfate,
nitrate, chloride, and other major ions in pre-
cipitation reported by the National Acid Depo-
sition Program (NADP). However, unlike the
apparent downward trend in sulfate deposition
at Underhill, the annual Hg levels observed at
Underhill show variation from year to year
without a clear increasing or decreasing trend. To
further understand the possible causes for the
seasonal and annual variations, the Hg data was
compared with other long-term Hg records, as
well as with the on-site meteorological data and
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Table 2. Top deposition events (>0.4 lg/m2) at the PMRC

site from 1993–2003

Trajectory

ID

Event

start

date

Precipitation

depth (cm)

Hg

concentration

(ng/l)

Hg wet

deposition

(lg/m2)

A 4/25/1993 2.1 17.7 0.4

B 6/15/1993 2.0 24.8 0.5

C 7/29/1993 1.8 21.3 0.4

D 8/24/1993 3.6 10.4 0.4

E 8/31/1993 4.4 10.8 0.5

F 9/9/1993 2.0 22.6 0.4

G 5/31/1994 2.4 23.0 0.6

H 6/6/1994 3.9 12.0 0.5

I 5/14/1995 1.6 30.9 0.5

J 7/1/1995 5.6 8.7 0.5

K 8/3/1995 6.0 11.0 0.7

L 8/11/1995 2.7 20.8 0.6

M 6/13/1996 3.8 11.2 0.4

N 7/26/1996 2.4 15.0 0.4

O 9/28/1996 3.1 15.5 0.5

P 7/9/1997 4.9 12.3 0.6

Q 7/14/1997 3.5 21.1 0.7

R 7/15/1997 2.0 26.2 0.5

S 5/31/1998 4.9 13.1 0.6

Not Shown 7/16/1998 2.6 21.0 0.5

T 8/24/1998 2.3 17.7 0.4

U 9/15/1998 5.2 9.4 0.5

V 9/26/1998 2.3 18.5 0.4

W 9/30/1998 2.6 13.4 0.4

X 7/5/1999 4.4 8.7 0.4

Y 7/9/1999 2.3 17.8 0.4

Z 5/8/2000 4.9 8.5 0.4

AA 5/18/2000 1.7 26.8 0.4

BB 6/16/2001 3.0 13.0 0.4

CC 7/10/2001 2.6 14.8 0.4

DD 8/31/2001 5.0 12.2 0.6

EE 6/11/2002 4.9 8.4 0.4

FF 6/21/2002 3.9 15.5 0.6

GG 7/5/2002 2.6 15.2 0.4

HH 7/8/2002 4.7 12.4 0.6

II 9/14/2002 4.0 12.3 0.5

JJ 9/22/2002 4.4 10.6 0.5

KK 8/4/2003 4.6 14.5 0.7

LL 10/20/2003 5.1 35.3 1.8
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