Mass Balance Assessment for Mercury in Lake Champlain

I G GA ,*, . GAB IE A A A , A E B. HA E , EI C. A A , E IC . I E , $^{\perp}$ GE A D . EE E , $^{\#}$ I H CHE BA ,

TABLE 1. Physical Dimensions (25) and MB Modeling Results for Each of the 13 Lake Segments^a

segment (sampling location)	surface area (km²)	vol (km³)	length (km)	trib input (g Hg/ year)	WWTFs input (g Hg/year)	wet dep input (g Hg/year)	dry dep input (g Hg/year)	volatile loss (g Hg/year)	sedim ent loss (g Hg/year)	sampled [Hg] (ng Hg/L)	modeled [Hg] (ng Hg/L)
l\LaMin: (aτΡητΑΓ)	185.59	1.892	40. 3	2417	0	1455	1581	3613	5194	0.27	0.18
C m \an Ba	10.75	0.063	3.4	2241	80	84	115	694	309	0.38	0.49
Ma n La	414.14	16.787	47	8216	13	3255	3077	1856 7	7399	0.33	0.35
ΡτΗη (aτC\ Ba)	75.55	1.463	20. 1	188	3	605	278	2233	1387	0.32	0.25
M q Ba	89.94	0.205	16. 8	2340	3	738	699	1842	1525	0.38	0.18
τ.A. an Ba	7.21	0.023	3.4	71	9	57	50	16	158	0.30	0.06
NiharAm (arlniana)	248.25	3.38	33. 5	243	0	1959	1884	414	4670	0.24	0.05
Ma ^l π Ba	55.06	0.722	6.7	3165	0	433	426	1181	2655	0.28	0.19
B \nτnBa (aτB \nτnHa)	5.51	0.063	2	52	38	44	39	179	251	0.27	0.27
h 🕴 n Ba	9.62	0.14	3.4	213	3	77	69	374	181	0.26	0.31
Oπ C (arDam n l∖an)	28.49	0.955	10. 1	3690	2	229	101	1286	542	0.32	0.36
ʻhLa A (ar.C. n.P.nr.)	43.27	0.125	33. 5	1424	2524	353	160	3482	766	0.52	0.60
าhLa B (a∵เBn n′Lan n)	5.79	0.0078	20. 1	2203	2	47	21	984	179	0.98	1.23
ττal	1179.1 7	25.826	N/A	2646 3	2677	9336	8479	3486 5	25216	a 0.37	a 0.35
ª∡h m ∖n ∖τ	f m 'n	MB m	! n	'nτ	τa n	τn n 200	1an tha	mpt n	h aւ [DGM	= 20%[_* H	

2. Development of a Mass Balance Model for Hg in Lake Champlain

OL. 40, NO. 1, 2006 / EN IRONMEN AL CIENCE & ECHNOLOG 83

3.56 8.52 μ / ²

Supporting Information Available H , Н I ://

Literature Cited

- ++ , C. . , C. .; , C.; А . Environ. Sci. Technol. 1994, 28(3), 136A-143A.
- . . .: .A. . Environ. Sci. Technol. 1997, 31, 942–947. , . .; , G. . D (3) , A. F.;
- 🕈 (🍎, 1994-В , 1995). Environ. Sci. Technol. 2002, 36 (21), 4525-32.
- (4) , . .; $, H. E.; C_{7}$, . B. D . Environ. Sci. Technol. 2003, 37 (5), 865-72.
- , .A.D , .-.; 🏲, .H.; Е
- B *****. Environ. Sci. Technol. **2000**, 34 (19), 4058–63. , B.; C , D.; , B.
- . Environ. Sci. Technol. 1999, 33 (6), 840-9. ,H.; , . .;B , . .
- Environ. Sci. Technol. 2002, 36 (7), 1383-8. I , A., E . Lake Champlain sediment toxics assessment program: an assessment of sediment associated contaminants in
- Lake Champlain, Phase I; С В С В : G . 5; , , 1994.
- ,.; 屮 🕨 , .; ,G.;
- B . Water, Air, Soil Pollut. 1995, 80, 353-.; B , G. .
- , . .; , A., .; . I Atmospheric Deposition of В Contaminants to the Great Lakes and Coastal Waters; B E., E .; E AC ; E AC
- F, 1997; 245−257. F, ; , , .; A , . . C A I С B .I Lake Champlain in Transition: From Research Toward **♥**, . ., • . ., E .; Restoration;
- A ; A DC, 1999; . 1, 1–23. T, .B.;D ,A.F.; 1 **₽**, .; , G. С В . Lake Champlain in Transition: From Research Toward Restoration; ♥, . ., , ♥, . .,E .; G ♥ : А , DC, 1999; . 1.
- 277–299, , , .; 🖅, . B.; , G. . F . Water, Air, Soil Pollut. 1998, 105, 427-438.
- C ♥, H. B.; , .; B , .; . Results of the Lake Michigan Mass Balance Study: Mercury Data Report; E A 905 -01-012; . . E , DC, 2004.
- **∳**, . .; ₱, . B.; , . F.;
 H. E.; A _, G. . ₱ , D.A.; 🗡 ,
- . EOS, Trans. Am. Geophys. Union 2002, 83, 5, 45-48. , . A.; C , . F. Geochemical data on concentrations $of inorganic \ constituents \ and \ polychlorinated \ biphenyl \ congeners$ in streambed sediments in tributaries to Lake Champlain in New York, Vermont, and Québec, 1992; . . G 94–472; ...G , DC, 1994; 1−65, , .; *****, C. A.;
- 1 ,...F
 - . Limnol. Oceanogr. 2001, 46 (3), 623 - 31.

